
Can Refactorings Indicate Design Tradeoffs?

Thomas Schweizer
Université de Montréal

Montreal, Canada

thomas.schweizer@umontreal.ca

Vassilis Zafeiris
Athens University of

Economics and Business
Athens, Greece

bzafiris@aueb.gr

Marios Fokaefs
Polytechnique Montréal

Montreal, Canada

marios.fokaefs@polymtl.ca

Michalis Famelis
Université de Montréal

Montreal, Canada

famelis@iro.umontreal.ca

Abstract—Refactoring does not always improve monotonically
the quality of software. In this exploratory study, we analyze the
revision history of JFreechart to see if fluctuations in internal
quality metrics in commits containing refactoring can be used
as indicators for the presence of design tradeoffs. We present
qualitative and quantitative results suggesting that, in the context
of refactoring, tradeoffs in internal quality metrics can be used
to find design tradeoffs.

Index Terms—Refactoring, Version History, Design Tradeoffs
I. INTRODUCTION

Contemporary software development practices, such as Ag-

ile, place emphasis on the creation of working implementation

increments, often at the expense of detailed up-front design.

Non-functional requirements, including design quality, are

assumed to be taken care of at a later maintenance stage. On

the one hand, this allows rapid release cycles, where patches,

corrections, and enhancements are applied after the release.

On the other hand, this practice tends to accumulate technical

debt [1], thus requiring a lot of maintenance effort in order to

continue development. More generally, technical debt affects

all software systems due to the common problems of design

erosion [2] and design evaporation [3].

Post-release changes to non-functional aspects of a software

system, namely structure and design quality, aiming to prepare

it for future extensions and functional enhancements, are

known in the literature as preventive maintenance [4]. During

this phase, refactoring is a key activity [5]. It is used to

introduce typically small, local changes to the code to improve

non-functional requirements without affecting the application’s

observable behaviour. Refactoring has also been extensively

studied for its impact on design quality [6], [7], as well as

with respect to developer habits concerning its application

on software systems [8], [9]. The resulting consensus is

that refactoring definitely impacts the design of a system

in a significant way. This is not an incidental relationship:

developers purposefully use refactoring to express specific

design intentions [9] and use recommender systems to identify

the most suitable refactorings to best suit their intents [10].

However, despite this well proven relationship between

refactoring and design, to the best of our knowledge there is

no work that uses refactoring as an indicator for detecting the

presence of design decisions. While, cases where refactoring

improves the quality of software monotonically are straightfor-

ward, cases where refactoring coincides with design tradeoffs
– decisions about design that are non-monotonic with respect

to quality, i.e., improve some quality characteristic at the

expense of others – are less so. Since refactoring is an activity

in which developers embark intentionally, it is reasonable to

conjecture that the co-occurrence of refactoring and design

tradeoffs indicates a potentially pivotal point with respect to

the design of a software artifact. The ability to recover such

pivotal points in time is very useful. For example, developers

can use this knowledge to guide their decisions during software

evolution. Further, recovering such design tradeoffs can help

mitigate design erosion and evaporation as source code is the

most reliable and immutable information about a system.

In practical terms, we need a better understanding of how

developers use refactorings not just as quick fixes, but as a tool

to introduce larger scale design and architectural decisions.

We conjecture that a first indicator can be the design tradeoffs

that are made during refactoring. Refactorings are intended to

improve software quality and should thus improve particular

design quality metrics. However, this is not monotonic for all

metrics; a refactoring may cause some metrics to improve,

while others to deteriorate. Can such fluctuations be used to

detect design tradeoffs?

In this paper, we present an exploratory study to investigate

whether refactorings are an indicator of design tradeoffs. Its

purpose is to estimate a refactoring revision’s contribution

to design quality through the use of internal quality metrics.

We make the following contributions: (1) A deep analysis of

revisions containing refactorings in JFreechart. (2) A classifi-

cation scheme to qualify fluctuations in internal quality metrics

between two revisions. (3) An automated methodology to

process additional projects. The paper is organized as follows:

We discuss related work in Sec. II. We present our study

design in Sec.III and show quantitative results in Sec. IV and

a qualitative analysis in Sec. V. We conclude in Sec. VI.

II. RELATED WORK

Our study and our definition of tradeoffs are inspired by

the work of Stroggylos et al. [7]. They presented a set of

studies that have used metrics for quality evaluation and to

guide design and evolution in the context of refactoring. By

comparing quality metrics before and after refactorings they

found that the impact of refactoring is not always positive.

The activity of refactoring and its relation to design has been

extensively studied [6]. Soetens et al. analyzed the effects of

refactoring on the code’s complexity [11]. Bavota et al. [12]

investigated the relationship between refactoring and low

maintainability, evidenced by internal metrics’ values and the

presence of code smells. The study revealed that refactorings

are not applied to classes indicated by quality metrics, but,

often, target classes affected by code smells. Cedrim et al.

used RMiner [13] for the detection of refactorings in the

commit history of 25 projects and showed that a significant

part of refactorings do not remove code smells [14]. Kadar et

al. [15] and Hegedüs et al. [16] studied the relation between

metrics and maintainability in-between releases, finding a

cyclic relation, where low maintainability leads to refactoring

activity. Chávez et al. studied how refactoring affects quality

attributes at the metric level [17]. In contrast, our study focuses

specifically on the role of refactoring on internal qualities

when metrics reflect a tradeoff and how it relates to design.

III. STUDY DESIGN

Setup. JFreeChart is a Java project that has been studied

extensively by the refactoring community [6], [18] due to its

medium size (∼600 classes) and history (over 10 years old).

It is big enough to be relevant in quantitative analysis, while

being small enough to allow manual and qualitative analysis

to help guide our future studies. We selected all the revisions

available on the GitHub repository of JFreeChart before 2018-

05-01: 3646 revisions over 10 years of development.

To isolate the revisions containing refactorings, we used

RMiner [13], a specialized tool for refactoring detection in

revision histories. We ignore refactorings related to test code.

RMiner yields a list of revisions with at least one refactoring.

We call these revisions refactoring revisions (RRs).

We computed changes in internal quality metrics across

all RRs using SourceMeter [19]. First, we selected an set of

metrics that cover different internal quality characteristics. We

selected LCOM5 to measure cohesion, WMC for method com-

plexity, CBO for coupling, and DIT for inheritance complexity.

The metrics were selected as they are considered some of

the most representative for the particular properties and good

indicators of design quality [20], [7]. We created a custom

pipeline to generate a dataset of metric differences per class

and refactoring revision by comparing the values of metrics

between each RR and its parent. Our analysis focuses on the

changed classes of a revision and added or deleted classes are

ignored. Next we aggregated for each revision and each in-

dividual metric the metric differences across changed classes.

This results in a quadruple of aggregate metric differences

for each RR. To handle cases where metric changes across

multiple classes cancel out each other, we count for each

revision the number of times each metric has changed. We use

this count in the next processing stage to remove ambiguities.

Classification. We focus on the direction of change as a trend,

rather than on magnitude. To better understand such trends, we

define four classification scenarios:

Scenario 1: no change in metrics. An example of this is a

revision where a refactoring was found to have been applied,

but no change in any of the selected metrics was found. This

is the case for refactorings like renames. Based on the metrics

we have selected, Scenario 1 instances are not normally

expected to represent important design decisions, but rather

pure functionality addition or understandability enhancements.

Scenario 2: a change in a single metric. Here we include RRs

that affect a single metric, positively or negatively. Especially,

in the case of positive impact, these instances could correspond

to targeted changes to specifically improve the particular

metric. While this may show clear intent, the intent is not

necessarily related to design decisions.

Scenario 3: all metrics monotonically improving or decline.
This includes RRs where more than one metric was impacted.

A special inclusion condition is that all the affected metrics

should have changed towards the same direction, either all

positively or all negatively. Similar to Scenario 2, RRs in this

scenario show clear intent. However, due to the scale of change

and the impact on metrics, the intent is more inclined to be

closer to a design decision.

Scenario 4: multiple metrics change in different directions.
This is the same as Scenario 3 in terms of multiple metrics

being affected, with the important difference that not all met-

rics change towards the same direction. One popular example

is the metrics for cohesion and coupling, which in many cases

change at the same time, but in opposite directions, especially

during remodularization tasks [7]. In our view, these instances

are the most interesting ones, as they indicate conflicting goals.

We call instances of Scenario 4, design tradeoffs. In prac-

tice, a design tradeoff is a situation where a change, i.e., a

refactoring action, would result in a controversial impact to

design quality; while some dimensions are improved, others

may deteriorate. In this situation, the developer will have to

make a decision as to which metrics and quality aspects are

more important than others (given the current requirements)

and eventually settle for specific tradeoffs. We thus consider

Scenario 4 RRs to be closely related to design decisions.

Manual analysis. Finally, we manually analyzed each refac-

toring revision to identify the design intent behind applied

refactorings. We based our analysis on code and comment

inspection, commit messages, and the changelog of refactored

classes. Specifically, we studied the developers’ design intent

from two perspectives: (1) The involvement of design deci-

sions in the refactoring process, i.e., whether the developer

applied the identified refactorings as part of introducing new

design decisions or enforcing design decisions that were

established in previous revisions. (2) The type of implemen-

tation task the developer was engaged in, while changing

code structure through refactoring, i.e., whether any design

decisions were enforced as part of (a) refactoring low quality

code, (b) implementing new features, or (c) fixing bugs.

Threats to validity. Construct validity: By using only four

metrics we may miss some aspects of the changes in an RR.

To mitigate this, we selected metrics that are tied to well

known internal quality attributes. We ignore metric fluctuations

due added/deleted classes. We concentrated on tradeoffs at

the class level, which might hinder drawing conclusion at

the project level. Our study is exploratory; we intend to

investigate these effects in the future. Internal validity: We

TABLE I
REFACTORING OPERATIONS IN JFREECHART

Refactoring Type Count

Extract And Move Method 6 (2.5%)
Extract Method 80 (33.5%)
Extract Superclass 2 (0.8%)
Inline Method 4 (1.7%)
Move Class 20 (8.4%)
Move Method 6 (2.5%)
Move Source Folder 1 (0.4%)
Pull Up Attribute 12 (5.0%)
Pull Up Method 14 (5.9%)
Rename Class 15 (6.3%)
Rename Method 79 (33.0%)

depend on RMiner, which is not a perfect detector of RRs.

To mitigate this, we manually removed false positives. We

depend on SourceMeter and are therefore tied to its quality. We

engineered our pipeline to easily incorporate newer versions

of these two external tools. Manual design intent detection is

subject to researcher bias. To mitigate this, the detection was

done independently by two co-authors, followed by a consen-

sus establishing step. External validity: We analyzed a single

project, JFreeChart, and so our conclusions may not general-

ize. We also focused on a subset of the project’s history. Our

study is exploratory, with a clearly defined scope; we therefore

do not claim generalizability, but rather make an existential

argument that it is possible to detect design tradeoffs using

refactorings as an indicator. Empirical reliability: We provide

a replication package at https://zenodo.org/record/3995396.

IV. QUANTITATIVE RESULTS

We automatically analyzed 3646 commits in the version

history of JFreeChart with an extended version of RMiner [13].

The tool identified 247 refactoring operations in the production

code that were distributed across 68 revisions. The automati-

cally identified refactorings were manually validated and eight

of them (7 cases of EXTRACT METHOD, 1 case of RENAME

METHOD) were rejected as false positives. The RRs contain-

ing them did not include any true positives and were also

rejected from further analysis (4 revisions). Table I presents

the distribution of true positives to different refactoring types

in the 64 remaining RRs. The 64 RRs were further processed

in order to measure the differences of internal metrics for all

changed classes.

We then automatically classified each refactoring revision

to one of the four scenarios introduced in Sec. III. We

show the classification in Table II. Noticeably, a large part

of RRs (29.7%) do not involve changes to internal metrics

(Scenario 1). Source code changes in these revisions are due

to rename and move class refactoring operations. RRs with

a single changed metric (Scenario 2), amount for 35.9% of

total revisions. These revisions involve mainly extract method

refactorings that affect the WMC metric. Revisions classified

to Scenario 3 make up 25% of the total. In them, developers

applied a more extensive set of refactoring operations, such as

MOVE ATTRIBUTE/METHOD, EXTRACT SUPERCLASS, and

MOVE CLASS. Such refactorings have a combined effect on

internal metrics, either improving or deteriorating all of them.

TABLE II
REFACTORING REVISIONS FOR EACH SCENARIO

Scenario 1 Scenario 2 Scenario 3 Scenario 4

#Revisions 19 23 16 6
Percentage 29.7% 35.9% 25.0% 9.4%

Finally, we found that in 9.4% of RRs multiple metrics are

changed towards different directions. Such revisions usually

involve design tradeoffs, i.e., improvement of a design property

of one or more classes at the expense of deteriorating another.

For instance, a MOVE METHOD refactoring may improve the

cohesion of the origin class at the expense of increasing the

coupling of the destination class.

In terms of the tasks that developers performed in RRs, we

found that in 30 (46.9%) RRs, developers were engaged purely

in refactoring; in 29 (45.3%) RRs they were implementing new

features; and in 5 (7.8%) RRs they were fixing bugs. We deter-

mined the type of implementation task through inspection of

code differences combined with analysis of commit logs, and

embedded change logs of refactored classes. In several cases,

commit and change logs included references to issue tracking

identifiers. Revisions with a pure refactoring purpose (termed

“root canal” by [21]) correspond to 46.9% of total revisions.

Most of these revisions (20 out of 30) involved only renaming

operations, while the rest applied EXTRACT/INLINE/MOVE

METHOD refactorings. Simple refactorings (EXTRACT/MOVE

METHOD) are also applied within revisions that focus on

fixing bugs. The most complex and, also, interesting cases of

refactorings are part of revisions that focus on new feature im-

plementation tasks (termed “flossing” by [21]). These revisions

correspond to 45.3% of the total and involve moving state

and behaviour among classes, as well as, superclass extraction

in class hierarchies. We discuss the most interesting of these

cases that are also characterized by design tradeoffs in Sec. V.

V. QUALITATIVE ANALYSIS

Our manual evaluation of revisions revealed several design

decisions related to the refactorings that we detected. Here,

we select and explain interesting design decisions identified in

RRs from Scenarios 3-4. Moreover, we discuss the effect on

internal metrics of the refactorings applied in each revision. We

summarize these revisions in Table III. Each revision is given a

number, used below for identification; we also list under what

scenario it was classified, its Git commit ID and aggregate

metric differences. The first two revisions were classified in

Scenario 3 and include some interesting design decisions. The

remaining four revisions were classified in Scenario 4. One

of these revisions, R3, involves one of the most complex

refactorings in the revision history of JFreeChart.

Revision R1. Here, an EXTRACT SUPERCLASS refactoring

unifies under a common parent, the TextAnnotation and

AbstractXYAnnotation class hierarchies, as well as the

individual class CategoryLineAnnotation. This way,

a larger class hierarchy is formed having the extracted su-

perclass AbstractAnnotation as root. The refactoring

was motivated by the need to add an event notification

mechanism to plot annotation classes1. The developers decided

to add this feature to all plot annotation classes through

its implementation in a common superclass (Abstract-
Annotation). The implementation comprises appropriate

state variables and methods for adding/removing listeners and

firing change events. The new feature increased the DIT value

of all AbstractAnnotation subclasses, as well as their

coupling (CBO) due to invocations of inherited methods. The

negative impact on WMC and LCOM5 metrics is due to extra

functionality added to client classes of the new feature (e.g.

Plot, CategoryPlot).

R1 shows an occurrence of a design decision that spans

over multiple classes where there is no tradeoff with respect

to metrics.

Revision R2. This revision involves two PULL UP METHOD

refactorings from AbstractCategoryItemRenderer to

the parent class AbstractRenderer. The refactorings en-

able reuse of functionality related to adding rendering hints to

a graphics object. The functionality was introduced in a previ-

ous revision to AbstractCategoryItemRenderer and

is reused in order to provide hinting support to all renderers.

In revision R2 the methods are invoked from AbstractXY-
ItemRenderer and its subclass XYBarRenderer. The

refactorings added extra methods to AbstractRenderer
and, thus, increased the values of WMC, LCOM5 and CBO

metrics. Although metric values were improved (negative

change) for AbstractCategoryItemRenderer, the ag-

gregate change values for the revision are still positive due to

method declarations and invocations in AbstractXYItem-
Renderer and XYBarRenderer.

R2, while very similar to R1, shows a that the direction of

changes happening at the class granularity can be masked by

the revision granularity in the same design decision.

Revision R3. This revision includes 20 refactoring operations

comprising 1 EXTRACT SUPERCLASS, 1 EXTRACT METHOD,

1 RENAME METHOD, 10 PULL UP ATTRIBUTE and 8 PULL

UP METHOD. The refactoring inserts an intermediate subclass

(DefaultValueAxisEditor) between DefaultAxis-
Editor, the hierarchy root, and DefaultNumberAxis-
Editor, its direct child. The new parent of Default-
NumberAxisEditor absorbs a large part of its state and

behaviour. The refactoring was motivated by the need to

introduce a properties editing panel for the logarithmic scale

numeric axis. The new panel (DefaultLogAxisEditor)

has overlapping functionality with DefaultNumberAxis-
Editor. This functionality is reused through inheritance and

DefaultLogAxisEditor is implemented as a subclass

of DefaultValueAxisEditor. Moreover, the developers

decided to reuse DefaultNumberAxisEditor function-

ality through a new parent class, in order to maintain the

abstraction level of the hierarchy root. However, the CBO and

WMC of DefaultAxisEditor have increased, since it,

also, serves as a factory for creating instances of its subclasses.

The positive impact on metrics in revision R3 (reduction of

1https://sourceforge.net/p/jfreechart/patches/253/

TABLE III
METRIC FLUCTUATIONS IN INTERESTING CASES

Id Scenario Commit WMC LCOM5 CBO DIT

R1 3 4c2a050 10 3 25 18
R2 3 74a5c5d 4 2 2 0
R3 4 1707a94 -9 -1 5 2
R4 4 202f00e 1 0 -1 0
R5 4 528da74 -2 -2 1 -1
R6 4 efd8856 12 -3 0 0

WMC, LCOM5) is dominated by the simplification of the

DefaultNumberAxisEditor implementation due to pull

up refactorings.

R3 shows a design decision spanning over multiple class

where there is a trade-off in metrics. Also, it shows that

examining metrics at revision level can masks important

details happening in smaller levels. Additionally, this is an

example of tangled commit where an implementation is also

added for PolarPlot editor.

Revision R4. The focus of code changes in this revision is

the simplification of the API that Plot class provides to its

subclasses. The applied refactorings extract the notify listen-

ers functionality to a new method, fireChangeEvent()
with protected visibility. Although the implementation of the

extracted method is rather simple, it replaces the notification

logic in fifteen locations in the Plot class and in several lo-

cations in its subclasses CategoryPlot, FastScatter-
Plot and XYPlot. Moreover, it decouples Plot subclasses

from the implementation of the change event. The refactor-

ing increases the WMC of Plot due to the new method

declaration and decreases the CBO of its subclasses due to

the removal of references to the change event implementation

(PlotChangeEvent). We note that due to unused imports

of the PlotChangeEvent class in Plot subclasses, the

SourceMeter tool does not recognize the reduction of CBO in

all cases.

R4 shows a design decision affecting multiple classes where

the trade-off is between two metrics only. Additionally, this

is a revision where there is no granularity conflict between

revision and classes. This represents a ”happy case”: the

revision contains only the refactoring implementation which

corresponds to a single design decision that is represented by

a metric trade-off.

Revision R5. In this revision, the identified refactorings

involve moving an attribute and two methods, relevant to

rendering a zoom rectangle, from ChartViewerSkin to

ChartViewer class. The ChartViewerSkin is removed

from project and ChartViewer is turned from a UI control

to a container for the layout of chart canvas and zoom

rectangle components. The simplification of ChartViewer
is responsible for the improvement of WMC, LCOM5 and

CBO in revision R5. However, the CBO improvement has been

counterbalanced due to another refactoring, not detected by

RMiner, that implements a second design decision within the

same revision. The refactoring involves move and inlining of

two ChartCanvas methods in the DispatchHandlerFX
class. The methods are related to dispatching of mouse events

and their relocation introduces a Feature Envy code smell in

DispatchHandlerFX and respective increase in the CBO

metric. Nevertheless, this solution is preferred since it enforces

a basic decision in the design of ChartCanvas: its behaviour

related to user interaction should be dynamically extensible

through registration of AbstractMouseHandlerFX in-

stances.

R5 shows two design decisions affecting multiple classes

resulting in a classification into Scenario 4. If only one design

decision where to have been implemented, it would have been

categorized as Scenario 3.

Revision R6. Finally, this revision includes a MOVE METHOD

refactoring from SWTGraphics2D to SWTUtils. The

refactoring enforces the decision that reusable functional-

ity related to conversions between AWT and SWT frame-

works should be located in SWTUtils class. The move

method lowers the complexity and improves the cohesion of

SWTGraphics2D, although its WMC value is not changed

due to extra functionality added in the same revision. On the

other hand, the cohesion of SWTUtils is slightly changed

contributing, thus, to the tradeoff between WMC and LCOM5

at revision level.

R6 shows a design decision paired with a feature imple-

mentation creating an opposite change for one metric at the

class granularity.

Overall, we can make some interesting observations. On one

hand, the combined fluctuations of DIT and CBO within revi-

sions (R1, R3) are evidence of structural changes potentially

related to design decisions. The type and target of refactoring

operations can contribute to tracing the classes affected by

these decisions. On the other hand, fluctuations of WMC and

LCOM5, usually indicating changes to class responsibilities,

indicate design decisions when they cause tradeoffs with other

metrics (R3, R4, R5). However, the impact of refactorings to

fluctuations of WMC and LCOM5 can be obscured by the

implementation of new features. The problem is exaggerated

in tangled RRs, i.e., one that containing unrelated changes for

the same commit [22] (R3, R5).

VI. CONCLUSION

The relationship between refactoring and design has been

extensively studied and theorized in the literature. However,

to the best of our knowledge, there has been no study that

uses refactoring as an indicator for the presence of design

tradeoffs. Assuming that changes in design are reflected in

quality metrics, we investigated the conjecture that refactorings

that cause non-monotonic fluctuations in metrics are evidence

of developers intentionally resolving a design dilemma by

making specific tradeoffs. We analyzed the revision history

of JFreeChart and found that a small minority of refactoring

decisions contain metric fluctuations. Qualitative analysis of

revisions in this minority uncovered interesting design choices.

This gives us evidence that our conjecture is in the right

direction and encourages us too study the phenomenon at a

larger scale. We are currently performing a larger study with

more projects and taking more metrics and fluctuation patterns

into account. We also intend to compare metric fluctuations to

other contexts than refactoring activities (e.g., code smells,

self-admitted technical debt) and to study how fluctuations

evolve over time.
REFERENCES

[1] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, Nov 2012.

[2] J. van Gurp and J. Bosch, “Design erosion: problems and causes,”
Journal of Systems and Software, vol. 61, no. 2, pp. 105 – 119, 2002.

[3] M. P. Robillard, “Sustainable software design,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016. ACM, 2016, pp. 920–923.

[4] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types
of software evolution and software maintenance,” Journal of software
maintenance and evolution: Research and Practice, vol. 13, no. 1, 2001.

[5] W. F. Opdyke, “Refactoring object-oriented frameworks,” 1992.
[6] J. Al Dallal and A. Abdin, “Empirical evaluation of the impact of object-

oriented code refactoring on quality attributes: A systematic literature
review,” IEEE Trans. Softw. Eng., vol. 44, no. 1, pp. 44–69, Jan. 2018.

[7] K. Stroggylos and D. Spinellis, “Refactoring–does it improve software
quality?” in Software Quality, 2007. WoSQ’07: ICSE Workshops 2007.
Fifth International Workshop on, May 2007, pp. 10–10.

[8] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, “A multidimensional
empirical study on refactoring activity,” in Proceedings of the 2013 Con-
ference of the Center for Advanced Studies on Collaborative Research,
ser. CASCON ’13. Riverton, NJ, USA: IBM Corp., 2013, pp. 132–146.

[9] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confessions
of github contributors,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 858–870.

[10] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, Recommending
Refactoring Operations in Large Software Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 387–419.

[11] Q. D. Soetens and S. Demeyer, “Studying the effect of refactorings:
a complexity metrics perspective,” in International Conference on the
Quality of Information and Communications Technology. IEEE, 2010.

[12] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality and
refactoring,” Journal of Systems and Software, vol. 107, 2015.

[13] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in
40th International Conference on Software Engineering (ICSE 2018).
Gothenburg, Sweden: IEEE, May 27 - June 3 2018.

[14] D. Cedrim, L. Sousa, A. Garcia, and R. Gheyi, “Does refactoring im-
prove software structural quality? a longitudinal study of 25 projects,” in
Proceedings of the 30th Brazilian Symposium on Software Engineering,
ser. SBES ’16. New York, NY, USA: ACM, 2016, pp. 73–82.

[15] I. Kádár, P. Hegedus, R. Ferenc, and T. Gyimóthy, “A code refactoring
dataset and its assessment regarding software maintainability,” in 2016
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1, March 2016, pp. 599–603.

[16] P. Hegedüs, I. Kádár, R. Ferenc, and T. Gyimóthy, “Empirical evaluation
of software maintainability based on a manually validated refactoring
dataset,” Information & Software Technology, vol. 95, 2018.

[17] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia,
“How does refactoring affect internal quality attributes?: A multi-project
study,” in Proceedings of the 31st Brazilian Symposium on Software
Engineering, ser. SBES’17. ACM, 2017, pp. 74–83.

[18] Z. Xing and E. Stroulia, “Refactoring detection based on umldiff change-
facts queries,” in Proceedings of the 13th Working Conference on
Reverse Engineering. IEEE Computer Society, 2006, pp. 263–274.

[19] Sourcemeter. [Online]. Available: https://www.sourcemeter.com/
[20] R. Marinescu, “Detection strategies: Metrics-based rules for detecting

design flaws,” in Software Maintenance, 2004. Proceedings. 20th IEEE
International Conference on. IEEE, 2004, pp. 350–359.

[21] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, Jan 2012.

[22] K. Herzig and A. Zeller, “The impact of tangled code changes,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, ser. MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 121–130.

