
Applying Software Engineering Principles To A Machine Learning Algorithm:

Lessons learned

Thomas Schweizer thomas.schweizer@umontreal.ca Michalis Famelis famelis@iro.umontreal.ca

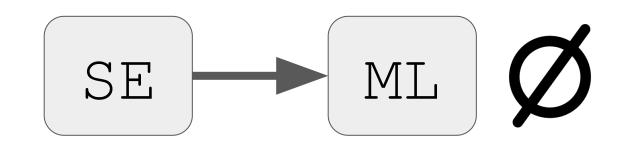
MOTIVATION

The machine learning (ML) research algorithm worked but had a few challenges, hindering productivity

> Software engineering (SE)

Decoupling concerns using refactorization

SIMPLE EFFECTIVE QUICK


Benefits

l L L

			READABILITY	
	We improved the code using a common software		MAINTAINABILITY	$\langle \rangle$
	engineering technique	Monitoring code		
Original ML code			REUSABILITY	
Challenges		Boilerplate code		
READABILITY MAINTAINABILITY REUSABILITY			INCREASE IN AGILITY & TESTABILITY	
TESTABILITY PRODUCTIVITY			BETTER PRODUCTIVITY	

ML AND SE CAN HELP EACH OTHER

SE Software repository mining, Integrated development environment, etc..

ML DEVELOPERS ARE SPECIALIZED PROGRAMMERS WITH THEIR OWN CONCERNS

ML

TESTABILITY & VERIFICATION

LESSONS LEARNED

- The developer was able to increase his productivity
- Unique trade-offs for each project and stakeholders
- Small changes can already yield great productivity increase

REMAINING CHALLENGES

- Environnement portability (Cloud / Local)
- Processor portability (CPU / GPU)
- Reproducing experiments (Gold Standard)

• Extensive industry evidence in other domains

FURTHER HORIZONS

- Does changing the structure of a machine learning algorithm affect the results [1]?
- What are the unique architectural concerns in ML and how can we address them ? Model Driven Engineering for ML ?
- What errors can we find automatically in ML algorithms by using SE?

[1] Mitliagkas, Ioannis et al. "Asynchrony begets momentum, with an application to deep learning." 2016. 54th Allerton CCC conference: 997-1004 Acknowledgements: Rémi Le Priol, Ioannis Mitliagkas and, Marios-Eleftherios Fokaefs Icons by Freepik from flaticon.com