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● Some concerns are well-known in SE

● Getting work done is a universal priority

● How can ML benefits from SE without 

losing productivity ?
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● ML developers should follow good software engineering 
practices

● How do I get stuff down then ?

● Decoupling code is a great way to get started, check if 
it’s enough for you. It’s really as much as you want to 
do

This activity is a trade-off between clean code 
and doing work
Tend to make the code more maintainable 
because you are forced to decouple things and 
understand the structure of the dependency 
graph
● Increase in reuse (boilerplate, logging, 

configuration, etc..)
● Concerns are separated making them easier to 

understand and change
● Can be applied to prototypes, research as well 

as (should) production code

● Does changing the structure of a machine learning algorithm affect the results [1] ?

● What are the unique architectural concerns in ML and how can we address them ? Model Driven Engineering for ML ? 

● What errors can we find automatically in ML algorithms by using SE ?

FURTHER HORIZONS
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MOTIVATION

Separating  concerns in a ML algorithm

● The developer was able to increase his productivity

● Unique trade-offs for each project and stakeholders

● Small changes can already yield great productivity increase

● Extensive industry evidence in other domains

Decoupling concerns using 
refactorization
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ML DEVELOPERS ARE SPECIALIZED PROGRAMMERS WITH THEIR OWN CONCERNS
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The machine learning (ML) 
research algorithm worked 
but had a few challenges, 
hindering productivity

We improved the code using a 
common software 
engineering technique

Software 
engineering (SE)

Software repository mining, Integrated development environment, etc..

ML AND SE CAN HELP EACH OTHER
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● Environnement portability (Cloud / Local)

● Processor portability (CPU / GPU)

● Reproducing experiments (Gold Standard)

● The developer was able to increase his productivity

● Do not apply blindly. Pragmatism is recommended

● Can be used in any project !

● It’s a different compromise for each project

● Extensive industry evidence in other domains

Challenges
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