
Applying Software Engineering Principles To A Machine Learning Algorithm:

Lessons learned Thomas Schweizer
thomas.schweizer@umontreal.ca

[1] Mitliagkas, Ioannis et al. “Asynchrony begets momentum, with an application to deep learning.” 2016. 54th Allerton CCC conference: 997-1004

Acknowledgements: Rémi Le Priol, Ioannis Mitliagkas and, Marios-Eleftherios Fokaefs Icons by Freepik from flaticon.com

● Some concerns are well-known in SE

● Getting work done is a universal priority

● How can ML benefits from SE without

losing productivity ?

MONITORING

TESTABILITY

VERIFICATION

DEPLOIEMENT

POST-PROCESSING

PRODUCTIVITY

AGILITY

● ML developers should follow good software engineering
practices

● How do I get stuff down then ?

● Decoupling code is a great way to get started, check if
it’s enough for you. It’s really as much as you want to
do

This activity is a trade-off between clean code
and doing work
Tend to make the code more maintainable
because you are forced to decouple things and
understand the structure of the dependency
graph
● Increase in reuse (boilerplate, logging,

configuration, etc..)
● Concerns are separated making them easier to

understand and change
● Can be applied to prototypes, research as well

as (should) production code

● Does changing the structure of a machine learning algorithm affect the results [1] ?

● What are the unique architectural concerns in ML and how can we address them ? Model Driven Engineering for ML ?

● What errors can we find automatically in ML algorithms by using SE ?

FURTHER HORIZONS

Michalis Famelis
famelis@iro.umontreal.ca

MOTIVATION

Separating concerns in a ML algorithm

● The developer was able to increase his productivity

● Unique trade-offs for each project and stakeholders

● Small changes can already yield great productivity increase

● Extensive industry evidence in other domains

Decoupling concerns using
refactorization

SIMPLE EFFECTIVE QUICK

Original ML code

ML DEVELOPERS ARE SPECIALIZED PROGRAMMERS WITH THEIR OWN CONCERNS

Software engineering
(SE)

Machine learning
(ML)

Academia, industry

?

OBSERVABILITY TESTABILITY & VERIFICATION

DEPLOYMENT

MONITORING

POST-PROCESSING

READABILITY MAINTAINABILITY REUSABILITY

TESTABILITY

ML algorithm

Monitoring code

Boilerplate code

The machine learning (ML)
research algorithm worked
but had a few challenges,
hindering productivity

We improved the code using a
common software
engineering technique

Software
engineering (SE)

Software repository mining, Integrated development environment, etc..

ML AND SE CAN HELP EACH OTHER

Benefits

MAINTAINABILITY

REUSABILITY

INCREASE IN AGILITY & TESTABILITY

BETTER PRODUCTIVITY

READABILITY

LESSONS LEARNED

● Environnement portability (Cloud / Local)

● Processor portability (CPU / GPU)

● Reproducing experiments (Gold Standard)

● The developer was able to increase his productivity

● Do not apply blindly. Pragmatism is recommended

● Can be used in any project !

● It’s a different compromise for each project

● Extensive industry evidence in other domains

Challenges

REMAINING CHALLENGES

PRODUCTIVITY

ML SE SE ML

